LLM Inference Optimization: KV Cache, Quantization, and Speculative Decoding (Part 2 of 2)

Introduction: LLM inference optimization is the art of making models respond faster while using fewer resources. As LLMs grow larger and usage scales, the difference between naive and optimized inference can mean 10x cost reduction and sub-second latencies instead of multi-second waits. This guide covers the techniques that matter most: KV cache optimization to avoid […]

Read more →

Running LLMs on Kubernetes: Production Deployment Guide

Deploying LLMs on Kubernetes requires careful planning. After deploying 25+ LLM models on Kubernetes, I’ve learned what works. Here’s the complete guide to running LLMs on Kubernetes in production. Figure 1: Kubernetes LLM Architecture Why Kubernetes for LLMs Kubernetes offers significant advantages for LLM deployment: Scalability: Auto-scale based on demand Resource management: Efficient GPU and […]

Read more →

Streaming LLM Responses: Building Real-Time AI Applications (Part 2 of 2)

Introduction: Waiting 10-30 seconds for an LLM response feels like an eternity. Streaming changes everything—users see tokens appear in real-time, creating the illusion of instant response even when generation takes just as long. Beyond UX, streaming enables early termination (stop generating when you have enough), progressive processing (start working with partial responses), and better error […]

Read more →

GraphQL for AI Services: Flexible Querying for LLM Applications

GraphQL provides flexible querying for LLM applications. After implementing GraphQL for 15+ AI services, I’ve learned what works. Here’s the complete guide to using GraphQL for AI services. Figure 1: GraphQL Architecture for AI Services Why GraphQL for AI Services GraphQL offers significant advantages for AI services: Flexible queries: Clients request exactly what they need […]

Read more →

LLM Routing and Load Balancing: Optimizing Cost and Performance Across Model Fleets

Introduction: LLM routing and load balancing are critical for building cost-effective, reliable AI systems at scale. Not every query needs GPT-4—many can be handled by smaller, faster, cheaper models with equivalent quality. Intelligent routing analyzes incoming requests and directs them to the most appropriate model based on complexity, cost constraints, latency requirements, and current system […]

Read more →

LLM Monitoring and Alerting: Building Observability for Production AI Systems

Introduction: LLM monitoring is essential for maintaining reliable, cost-effective AI applications in production. Unlike traditional software where errors are obvious, LLM failures can be subtle—degraded output quality, increased hallucinations, or slowly rising costs that go unnoticed until the monthly bill arrives. Effective monitoring tracks latency, token usage, error rates, output quality, and cost metrics in […]

Read more →