GraphQL for AI Services: Flexible Querying for LLM Applications

GraphQL provides flexible querying for LLM applications. After implementing GraphQL for 15+ AI services, I’ve learned what works. Here’s the complete guide to using GraphQL for AI services. Figure 1: GraphQL Architecture for AI Services Why GraphQL for AI Services GraphQL offers significant advantages for AI services: Flexible queries: Clients request exactly what they need […]

Read more →

LLM Routing and Load Balancing: Optimizing Cost and Performance Across Model Fleets

Introduction: LLM routing and load balancing are critical for building cost-effective, reliable AI systems at scale. Not every query needs GPT-4—many can be handled by smaller, faster, cheaper models with equivalent quality. Intelligent routing analyzes incoming requests and directs them to the most appropriate model based on complexity, cost constraints, latency requirements, and current system […]

Read more →

LLM Monitoring and Alerting: Building Observability for Production AI Systems

Introduction: LLM monitoring is essential for maintaining reliable, cost-effective AI applications in production. Unlike traditional software where errors are obvious, LLM failures can be subtle—degraded output quality, increased hallucinations, or slowly rising costs that go unnoticed until the monthly bill arrives. Effective monitoring tracks latency, token usage, error rates, output quality, and cost metrics in […]

Read more →

Structured Output from LLMs: JSON Mode, Function Calling, and Pydantic Patterns (Part 1 of 2)

Introduction: Getting reliable, structured data from LLMs is one of the most practical challenges in building AI applications. Whether you’re extracting entities from text, generating API parameters, or building data pipelines, you need JSON that actually parses and validates against your schema. This guide covers the evolution of structured output techniques—from prompt engineering hacks to […]

Read more →

LLM Inference Optimization: Caching, Batching, and Smart Routing (Part 1 of 2)

Introduction: LLM inference can be slow and expensive, especially at scale. Optimizing inference is crucial for production applications where latency and cost directly impact user experience and business viability. This guide covers practical optimization techniques: semantic caching to avoid redundant API calls, request batching for throughput, streaming for perceived latency, model quantization for self-hosted models, […]

Read more →

LLM Chain Debugging: Tracing, Inspecting, and Fixing Multi-Step AI Workflows

Introduction: Debugging LLM chains is fundamentally different from debugging traditional software. When a chain fails, the problem could be in the prompt, the model’s interpretation, the output parsing, or any of the intermediate steps. The non-deterministic nature of LLMs means the same input can produce different outputs, making reproduction difficult. Effective chain debugging requires comprehensive […]

Read more →