Three months into production, our RAG system started failing at 2AM. Not gracefully—complete outages. The problem wasn’t the models or the embeddings. It was the architecture. After rebuilding it twice, here’s what I learned about building RAG systems that actually work in production. Figure 1: Production RAG Architecture Overview The Night Everything Broke It was […]
Read more →Tag: Vector Database
Embedding Models Compared: OpenAI vs Cohere vs Voyage vs Open Source
Introduction: Embedding models convert text into dense vectors that capture semantic meaning. Choosing the right embedding model significantly impacts search quality, retrieval accuracy, and application performance. This guide compares leading embedding models—OpenAI’s text-embedding-3, Cohere’s embed-v3, Voyage AI, and open-source alternatives like BGE and E5. We cover benchmarks, pricing, dimension trade-offs, and practical guidance on selecting […]
Read more →Vector Database Comparison: Pinecone vs Weaviate vs Qdrant vs Chroma – Choosing the Right One for Your RAG Application
Last March, a 3AM alert changed everything. Our Pinecone bill had tripled overnight, and I spent the next three months migrating between vector databases, learning hard lessons about what actually matters. Let me share what I discovered—and what I wish someone had told me. Figure 1: Comprehensive comparison of vector database options The Night Everything […]
Read more →The Complete Guide to RAG Architecture: From Fundamentals to Production
Master Retrieval-Augmented Generation (RAG) with this expert-level guide. Learn about RAG types (Naive, Advanced, Modular, Agentic), chunking strategies, embedding models, vector databases, hybrid retrieval, and production best practices with high-quality architecture diagrams.
Read more →Vector Databases: Why They Matter in the Age of Generative AI
After two decades of architecting enterprise systems and spending the past year deeply immersed in Generative AI implementations, I can state with confidence that vector databases have become the cornerstone of modern AI infrastructure. If you’re building anything involving Large Language Models, semantic search, or Retrieval-Augmented Generation (RAG), understanding vector databases isn’t optional—it’s essential. This […]
Read more →Hybrid Search Implementation: Combining Vector and Keyword Retrieval
Introduction: Hybrid search combines the best of both worlds: the semantic understanding of vector search with the precision of keyword matching. Pure vector search excels at finding conceptually similar content but can miss exact matches; pure keyword search finds exact terms but misses semantic relationships. Hybrid search fuses these approaches, using vector similarity for semantic […]
Read more →