LLM Fine-tuning Fundamentals: When, Why, and How to Customize Language Models

Introduction: Fine-tuning transforms a general-purpose LLM into a specialized model for your specific use case. While prompt engineering works for many applications, fine-tuning offers advantages when you need consistent formatting, domain-specific knowledge, or reduced latency from shorter prompts. This guide covers practical fine-tuning: when to fine-tune versus prompt engineer, preparing training data, running fine-tuning jobs […]

Read more →

GPU Resource Management in Cloud: Optimizing AI Workloads

GPU resource management is critical for cost-effective AI workloads. After managing GPU resources for 40+ AI projects, I’ve learned what works. Here’s the complete guide to optimizing GPU resources in the cloud. Figure 1: GPU Resource Management Architecture Why GPU Resource Management Matters GPU resources are expensive and limited: Cost: GPUs are the most expensive […]

Read more →

AWS DevOps and Infrastructure as Code: CDK, CloudFormation, Terraform, and CI/CD (Part 6 of 6)

Infrastructure as Code (IaC) enables you to manage AWS resources through code, providing version control, repeatability, and collaboration. This guide compares AWS CDK, CloudFormation, and Terraform with production-ready examples. 📚 AWS FUNDAMENTALS SERIES – FINAL PART This is the final part of a 6-part series covering AWS Cloud Platform. Part 1: Fundamentals Part 2: Compute […]

Read more →

Document Processing with LLMs: From PDFs to Structured Data (Part 1 of 2)

Introduction: Documents are everywhere—PDFs, Word files, scanned images, spreadsheets. Extracting structured information from unstructured documents is one of the most valuable LLM applications. This guide covers building document processing pipelines: extracting text from various formats, chunking strategies for long documents, processing with LLMs for extraction and summarization, and handling edge cases like tables, images, and […]

Read more →

Building AI Agents with Tool Use: From ReAct to Production Systems

Introduction: AI agents represent the next evolution beyond simple chatbots—they can reason about problems, break them into steps, use external tools, and iterate until they achieve a goal. Unlike traditional LLM applications that respond to a single prompt, agents maintain state, make decisions, and take actions in the real world. The key innovation is tool […]

Read more →