Building Production RAG Applications with LangChain: From Document Ingestion to Conversational AI

Introduction: LangChain has emerged as the dominant framework for building production Retrieval-Augmented Generation (RAG) applications, providing abstractions for document loading, text splitting, embedding, vector storage, and retrieval chains. By late 2023, LangChain reached production maturity with improved stability, better documentation, and enterprise-ready features. After deploying LangChain-based RAG systems across multiple organizations, I’ve found that its […]

Read more →

Enterprise Generative AI: A Solutions Architect’s Framework for Production-Ready Systems

After two decades of building enterprise systems, I’ve witnessed numerous technology waves—from SOA to microservices, from on-premises to cloud-native. But nothing has matched the velocity and transformative potential of generative AI. The challenge isn’t whether to adopt it; it’s how to do so without creating technical debt that will haunt your organization for years. The […]

Read more →

Vector Databases: Why They Matter in the Age of Generative AI

After two decades of architecting enterprise systems and spending the past year deeply immersed in Generative AI implementations, I can state with confidence that vector databases have become the cornerstone of modern AI infrastructure. If you’re building anything involving Large Language Models, semantic search, or Retrieval-Augmented Generation (RAG), understanding vector databases isn’t optional—it’s essential. This […]

Read more →

Prompt Chaining Patterns: Breaking Complex Tasks into Manageable Steps

Introduction: Complex tasks often exceed what a single LLM call can handle well. Breaking problems into smaller steps—where each step’s output feeds into the next—produces better results than trying to do everything at once. Prompt chaining decomposes complex workflows into sequential LLM calls, each focused on a specific subtask. This guide covers practical chaining patterns: […]

Read more →